Таким образом, прогноз по данному методу является функцией прошлых и текущих данных, параметров ![]() а также начальных значений ![]() Метод Хольта−Уинтерса. Уинтерс [236] развил метод Хольта так, чтобы он охватывал еще и сезонные эффекты. Прогноз, сделанный в момент t на l тактов времени вперед, равен ![]() где ωτ − коэффициент сезонности, а N − число временных тактов, содержащихся в полном сезонном цикле. Сезонность в этой формуле представлена мультипликативно. Метод использует три параметра сглаживания ![]() а его формулы обновления имеют вид ![]() Как и в предыдущем случае, прогноз строится на основании прошлых и текущих значений временного ряда, параметров адаптации ![]() а также начальных значений ![]() Аддитивная модель сезонности Тейла−Вейджа. В экономической практике чаще встречаются экспоненциальные тенденции с мультипликативно наложенной сезонностью. Поэтому перед использованием аддитивной модели члены анализируемого временного ряда обычно заменяют их логарифмами, преобразуя экспоненциальную тенденцию в линейную, а мультипликативную сезонность в аддитивную. Преимущество аддитивной модели заключается в относительной простоте ее вычислительной реализации. Рассмотрим модель вида (в предположении, что исходные данные прологарифмированы) ![]() |
if gte vml |