Ãëàâà 1     Ãëàâà 2   
 

 

214. Nerlove M. (1956) “Estimates of the Elasticities of Supply of Selected

Agricultural Commodities”, Jorn. Farm Econ., 38, 496-509.

215. Nerlove M. (1958) “The Dynamics of Supply: Estimation of Farmers

Response to Price”. The Johns Hopkins Press. Baltimore.

216. Newey W., K. West (1987) “A Simple Positive Semi-Definite,

Heteroskedasticity and Autocorrelation Consistent Covariance Matrix,”

Econometrica, 55, 703–708

217. Newey W., K. West (1994) “Automatic Lag Selection in Covariance

Matrix Estimation,” Review of Economic Studies, 61, 631–

653.

218. Ng S., P. Perron (1995) “Unit Root Tests in ARMA models With

Data-Dependent Methods for the Selection of the Truncation

Lag”, Journal of American Statistical Association, 90, 268-281.

219. Nunes L.S., Newbold P., C.-M. Kuan (1997) “Testing for Unit

Roots With Breaks. Evidence on the Great Crash and the Unit Root

Hypothesis Reconsidered”, Oxford Bulletin of Economics and Statistics,

59, ¹4, 435-448.

220. Perron P. (1988) “ Trends and Random Walks in Macroeconomic

Time Series: Furter Evidence from a New Approach”, Journal of

Economic Dynamic and Control, 12, 297-332.

221. Perron P. (1989a) “The Great Crash, the Oil Price Shock, and the

Unit Root Hypothesis, Econometrica, 577, 1361-1401.

222. Perron P. (1989b) “Testing for a Random Walk: A Simulation Experiment

When the Sampling Interval Is Varied” – â ñáîðíèêå Advances

in Econometrics and Modeling (ðåäàêòîð B.Ray), Kluwer

Academic Publishers, Dordrecht and Boston.

223. Perron P. (1997) "Further evidence on breaking trend functions in

macroeconomic variables, Journal of Econometrics, 80, ¹2, 355-

385.

224. Perron P., Vogelsang T.J. (1993) “Erratum”, Econometrica, 61,

¹1, 248-249.

225. Phillips P.C.B. (1987) “Time Series Regression with a Unit Root”,

Econometrica, 55, 277-301.

226. Phillips P.C.B., P. Perron (1988) “Testing for a Unit Root in Time

Series Regression,” Biometrika, 75, 335–346.

227. Said E., D.A. Dickey (1984) “Testing for Unit Roots in Autoregressive

Moving Average Models of Unknown Order,” Biometrika,

71, 599–607.








if gte vml